teplota
Teplota je charakteristika tepelného stavu hmoty.
V obecném významu je to vlastnost předmětů a okolí, kterou je člověk schopen vnímat a přiřadit jí pocity studeného, teplého či horkého.
V přírodních a technických vědách a jejich aplikacích je to skalární intenzivní stavová veličina, která je vzhledem ke svému pravděpodobnostnímu charakteru vhodná k popisu stavu ustálených makroskopických systémů. Teplota souvisí s vnitřní energií systému.
Teplota je základní fyzikální veličinou soustavy SI s plným názvem termodynamická teplota, jednotkou kelvin (K) a vedlejší jednotkou stupeň Celsia (°C). Nejnižší možnou teplotou je teplota absolutní nuly (0 K; −273,15 °C), ke které se lze libovolně přiblížit, avšak nelze jí dosáhnout. V roce 2021 bylo rekordně nízkou dosaženou teplotou 38×10−12 K.[1]
K měření teploty se používají teploměry.
Teplota je ústředním pojmem termiky a klíčovou veličinou pro popis tepelných jevů. Projevuje se i v mnoha dalších fyzikálních jevech a závisí na ní mnohé makroskopické mechanické, elektromagnetické i chemické vlastnosti látek. Její význam zasahuje do širokého spektra oborů lidské činnosti, je důležitým pojmem např. v průmyslových aplikacích, lékařství a ekologii.
Motivace k zavedení teploty jako fyzikální veličiny
Teplota jako pojem byla primárně zavedena pro podnět či příčinu určitého druhu smyslových pocitů a podráždění. Zde má původ i její mezinárodní název (latinské slovo „temperatura“ lze přeložit jako „příjemný pocit“). Již potřeba popsat lépe tyto pocity vedla ke snahám kvantifikaci a měření teploty.
Postupně bylo pozorováno, že zvýšení teploty působí změnu rozměrů, tvaru nebo skupenství předmětů. Tyto jevy tak umožňovaly pomocí viditelných projevů indikovat velikost teploty a začít ji měřit.
Nejprve se začalo používat měření teploty pomocí roztažnosti kapalin. První doklady jsou ze starověku. Hérón Alexandrijský popsal vzduchový termoskop, který je nejstarším doloženým přístrojem k indikaci tepelných stavů. Základ pro moderní a přesné měření později poskytly závislosti elektrických jevů na teplotě.
Označení, jednotky
- Symbol veličiny: {\displaystyle t,\,T,\,\vartheta ,\,\Theta \,}, přičemž velké symboly se zpravidla používají pro termodynamickou (absolutní) teplotu
-
Jednotkou v soustavě SI (a zároveň základní jednotkou této soustavy) je kelvin, značka K.
Kelvin je definován fixací číselné hodnoty Boltzmannovy konstanty, aby byla rovna 1,380 649 × 10−23, je-li vyjádřena jednotkou J K−1, rovnou kg m2 s−2 K−1, kde kilogram, metr a sekunda jsou definovány pomocí {\displaystyle \Delta \nu _{\mathrm {Cs} }} (frekvence[pozn. 1] záření odpovídajícího hyperjemného přechodu z neporušené základní hladiny v atomu césia 133Cs) a dvou fundamentálních konstant {\displaystyle h} (Planckova konstanta), {\displaystyle c} (rychlost světla ve vakuu).
Do května 2019 byl kelvin definován jako 273,16-tá část termodynamické teploty trojného bodu vody.[pozn. 2]
Dalšími používanými jednotkami jsou:
- stupeň Celsia; teplotní rozdíl 1 °C = 1 K, avšak Celsiova stupnice je posunutá: 0 °C odpovídá přesně 273,15 K, což je přibližná teplota tání ledu, zatímco 100 °C (373,15 K) je přibližná teplota varu vody. Teplotami tání a varu vody při tlaku 101,325 kPa = 1 atm byla Celsiova stupnice původně (do roku 1948)[2] definována.
- stupeň Fahrenheita (používaný v USA); teplotní rozdíl 1 °F = 5/9 °C = 5/9 K; Fahrenheitova stupnice je také posunutá, ale jinak: 0 °C odpovídá 32 °F.
- Z jednotek přirozených soustav lze uvést Planckovu teplotu
- {\displaystyle T_{\mathrm {P} }={\sqrt {\frac {\hbar c^{5}}{Gk^{2}}}}\approx } 1,416 784(16) × 1032 K,[3][pozn. 3]
- Ve fyzice plazmatu se teplota vyjadřuje také jako energie {\displaystyle E=kT} (součin Boltzmannovy konstanty a teploty) uváděná v elektronvoltech (eV) nebo jeho násobcích (keV, MeV). Energie 1 eV tak odpovídá teplotě přibližně 11 605 K.